Great Western Electrification

Jill Poyton - Senior Sponsor

Presented at the Railfuture Autumn 2018 Conference at the Novotel, Reading, on Saturday 10 November 2018
(uploaded to the www.railfuture:org.uk website with permission of NR)

Working for you.

Once upon a time....................

Working for you.

Why electrify the railway?

Electrification frees up capacity

- Faster acceleration of new electric trains creates the capacity for extra trains to run on the GWML

Working for you.

Benefits of electrification - passengers

More seats, faster journeys

- Electric trains will have more seats than diesel trains of the same length.
- Faster journeys of up to 18 minutes from Bristol to Paddington.

Working for you.

Benefits of electrification

Better for the environment

- Emits 20-35\% less carbon per passenger than diesel trains
- Trains are virtually silent when waiting at stations

Reduced costs of electric trains

- Less maintenance and lower energy costs
- Lighter, causing less damage to track

Working for you.

Its getting difficult................

Working for you.

Capacity not assets

- Increase capacity between London and Cardiff/Bristol

- Bristol Parkway new platform
- Electrify Paddington to Cardiff
- Four tracking Filton Bank
- Rationalise Bristol East junction
- Run EMUs to Newbury

- Electrify between London and Newbury

NetworkRail

Working for you.

Building Overhead Line Equipment (OLE)

Working for you.

Series One - A new Electrification system

Building OLE - 130 mile long work site

1,500 OLE portals

Working for you.

Trial holes and ground conditions

Working for you.

OLE portal booms

Working for you.

To get the wires up

Bridge reconstruction

Working for you.

Bridges/Highways

Working for you.

Not all bridges are equal......

Working for you.

Getting power to the wires

Working for you.

Digging up fields

6 m wide trench
4km long

Working for you.

Vegetation

Private land
Fencing Screening
Grows back!

Working for you.

Getting the wires in the right place

Working for you.

Accessing the railway

Survey

Dig trial hole
Foundation
Mast
Small parts steel
Wiring
Registration
Testing / Commissioning
Snagging
Fixing
Handback
Working for you.

Where are we now?

Working for you.

- Increase capacity

- Faster train services
- More frequent train services
- Increased seating capacity
- Reduce carbon
- Quieter

- Reduce maintenance and operational cost

Working for you.

Options for Traction Energy Decarbonisation in Rail

					Electric		Autonomous Power			
Future Rolling Stock Category	Description	Total Self-Powered Range Required (miles)	Total Max Power Per Vehicle (kW)	Approx. Engine Energy Output Per Vehicle Per Day (kWh)			¢		Z \# \# 0	
A	Shorter distance self-powered with 75 mph maximum speed	500	275	1,200	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark
B	Middle distance self-powered with 100 mph capability	800	400	2,400	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark
C	Long distance self-powered with 125 mph capability	1100	550	4,620	\checkmark	\times	\checkmark	\times	x	\checkmark
E-A	Electric to 100 mph , self-powered to 75 mph	250	300	600	\checkmark	\checkmark	\checkmark	\checkmark	x	\checkmark
E-B	Electric to 100 mph , self-powered to 100mph	400	400	1,200	\checkmark	\checkmark	\checkmark	\times	x	\checkmark
E-SH	Electric to 100 mph with ability to do short hops 'off wire'	50	400	150	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
F-A	Electric to 125 mph , self-powered to 75mph	250	300	600	\checkmark	\times	\checkmark	\checkmark	\times	\checkmark
F-B	Electric to 125 mph , self-powered to 100mph	400	400	1,200	\checkmark	\times	\checkmark	\times	x	\checkmark
F-C	Electric to 125 mph , self-powered to 125 mph	550	550	2,310	\checkmark	\times	?	\times	x	?
F-SH	Electric to 125 mph with ability to do short hops 'off wire'	50	550	210	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark
Freight	Freight loco capable of hauling 2500 tonne trailing load	750	2400	18,000	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark

